Sudoku | Backtracking-7

Sudoku | Backtracking-7: GeeksforGeeks
by:
blow post content copied from  geeksforgeeks

click here to view original post


Given a partially filled 9×9 2D array ‘grid[9][9]’, the goal is to assign digits (from 1 to 9) to the empty cells so that every row, column, and subgrid of size 3×3 contains exactly one instance of the digits from 1 to 9. 

Loaded96.00%
Remaining Time1:07
1x

Example: 

Input:
grid = { {3, 0, 6, 5, 0, 8, 4, 0, 0}, 
         {5, 2, 0, 0, 0, 0, 0, 0, 0}, 
         {0, 8, 7, 0, 0, 0, 0, 3, 1}, 
         {0, 0, 3, 0, 1, 0, 0, 8, 0}, 
         {9, 0, 0, 8, 6, 3, 0, 0, 5}, 
         {0, 5, 0, 0, 9, 0, 6, 0, 0}, 
         {1, 3, 0, 0, 0, 0, 2, 5, 0}, 
         {0, 0, 0, 0, 0, 0, 0, 7, 4}, 
         {0, 0, 5, 2, 0, 6, 3, 0, 0} }
Output:
          3 1 6 5 7 8 4 9 2
          5 2 9 1 3 4 7 6 8
          4 8 7 6 2 9 5 3 1
          2 6 3 4 1 5 9 8 7
          9 7 4 8 6 3 1 2 5
          8 5 1 7 9 2 6 4 3
          1 3 8 9 4 7 2 5 6
          6 9 2 3 5 1 8 7 4
          7 4 5 2 8 6 3 1 9
Explanation: Each row, column and 3*3 box of 
the output matrix contains unique numbers.

Input:    
grid = { { 3, 1, 6, 5, 7, 8, 4, 9, 2 },
         { 5, 2, 9, 1, 3, 4, 7, 6, 8 },
         { 4, 8, 7, 6, 2, 9, 5, 3, 1 },
         { 2, 6, 3, 0, 1, 5, 9, 8, 7 },
         { 9, 7, 4, 8, 6, 0, 1, 2, 5 },
         { 8, 5, 1, 7, 9, 2, 6, 4, 3 },
         { 1, 3, 8, 0, 4, 7, 2, 0, 6 },
         { 6, 9, 2, 3, 5, 1, 8, 7, 4 },
         { 7, 4, 5, 0, 8, 6, 3, 1, 0 } };
Output:
           3 1 6 5 7 8 4 9 2 
           5 2 9 1 3 4 7 6 8 
           4 8 7 6 2 9 5 3 1 
           2 6 3 4 1 5 9 8 7 
           9 7 4 8 6 3 1 2 5 
           8 5 1 7 9 2 6 4 3 
           1 3 8 9 4 7 2 5 6 
           6 9 2 3 5 1 8 7 4 
           7 4 5 2 8 6 3 1 9 
Explanation: Each row, column and 3*3 box of 
the output matrix contains unique numbers.
Recommended Practice

Method 1: Simple.

Approach: The naive approach is to generate all possible configurations of numbers from 1 to 9 to fill the empty cells. Try every configuration one by one until the correct configuration is found, i.e. for every unassigned position fill the position with a number from 1 to 9. After filling all the unassigned position check if the matrix is safe or not. If safe print else recurs for other cases.

Algorithm: 

  1. Create a function that checks if the given matrix is valid sudoku or not. Keep Hashmap for the row, column and boxes. If any number has a frequency greater than 1 in the hashMap return false else return true;
  2. Create a recursive function that takes a grid and the current row and column index.
  3. Check some base cases. If the index is at the end of the matrix, i.e. i=N-1 and j=N then check if the grid is safe or not, if safe print the grid and return true else return false. The other base case is when the value of column is N, i.e j = N, then move to next row, i.e. i++ and j = 0.
  4. if the current index is not assigned then fill the element from 1 to 9 and recur for all 9 cases with the index of next element, i.e. i, j+1. if the recursive call returns true then break the loop and return true.
  5. if the current index is assigned then call the recursive function with index of next element, i.e. i, j+1

Implementation:



# N is the size of the 2D matrix   N*N
N = 9
 
# A utility function to print grid
def printing(arr):
    for i in range(N):
        for j in range(N):
            print(arr[i][j], end = " ")
        print()
 
# Checks whether it will be
# legal to assign num to the
# given row, col
def isSafe(grid, row, col, num):
   
    # Check if we find the same num
    # in the similar row , we
    # return false
    for x in range(9):
        if grid[row][x] == num:
            return False
 
    # Check if we find the same num in
    # the similar column , we
    # return false
    for x in range(9):
        if grid[x][col] == num:
            return False
 
    # Check if we find the same num in
    # the particular 3*3 matrix,
    # we return false
    startRow = row - row % 3
    startCol = col - col % 3
    for i in range(3):
        for j in range(3):
            if grid[i + startRow][j + startCol] == num:
                return False
    return True
 
# Takes a partially filled-in grid and attempts
# to assign values to all unassigned locations in
# such a way to meet the requirements for
# Sudoku solution (non-duplication across rows,
# columns, and boxes) */
def solveSudoku(grid, row, col):
   
    # Check if we have reached the 8th
    # row and 9th column (0
    # indexed matrix) , we are
    # returning true to avoid
    # further backtracking
    if (row == N - 1 and col == N):
        return True
       
    # Check if column value  becomes 9 ,
    # we move to next row and
    # column start from 0
    if col == N:
        row += 1
        col = 0
 
    # Check if the current position of
    # the grid already contains
    # value >0, we iterate for next column
    if grid[row][col] > 0:
        return solveSudoku(grid, row, col + 1)
    for num in range(1, N + 1, 1):
       
        # Check if it is safe to place
        # the num (1-9)  in the
        # given row ,col  ->we
        # move to next column
        if isSafe(grid, row, col, num):
           
            # Assigning the num in
            # the current (row,col)
            # position of the grid
            # and assuming our assigned
            # num in the position
            # is correct
            grid[row][col] = num
 
            # Checking for next possibility with next
            # column
            if solveSudoku(grid, row, col + 1):
                return True
 
        # Removing the assigned num ,
        # since our assumption
        # was wrong , and we go for
        # next assumption with
        # diff num value
        grid[row][col] = 0
    return False
 
# Driver Code
 
# 0 means unassigned cells
grid = [[3, 0, 6, 5, 0, 8, 4, 0, 0],
        [5, 2, 0, 0, 0, 0, 0, 0, 0],
        [0, 8, 7, 0, 0, 0, 0, 3, 1],
        [0, 0, 3, 0, 1, 0, 0, 8, 0],
        [9, 0, 0, 8, 6, 3, 0, 0, 5],
        [0, 5, 0, 0, 9, 0, 6, 0, 0],
        [1, 3, 0, 0, 0, 0, 2, 5, 0],
        [0, 0, 0, 0, 0, 0, 0, 7, 4],
        [0, 0, 5, 2, 0, 6, 3, 0, 0]]
 
if (solveSudoku(grid, 0, 0)):
    printing(grid)
else:
    print("no solution  exists ")
 
    # This code is contributed by sudhanshgupta2019a
Output
3 1 6 5 7 8 4 9 2 
5 2 9 1 3 4 7 6 8 
4 8 7 6 2 9 5 3 1 
2 6 3 4 1 5 9 8 7 
9 7 4 8 6 3 1 2 5 
8 5 1 7 9 2 6 4 3 
1 3 8 9 4 7 2 5 6 
6 9 2 3 5 1 8 7 4 
7 4 5 2 8 6 3 1 9

 Complexity Analysis:  

  • Time complexity: O(9^(n*n)). 
    For every unassigned index, there are 9 possible options so the time complexity is O(9^(n*n)).
  • Space Complexity: O(n*n). 
    To store the output array a matrix is needed.

Method 2: Backtracking. 

Approach: 
Like all other Backtracking problems, Sudoku can be solved by one by one assigning numbers to empty cells. Before assigning a number, check whether it is safe to assign. Check that the same number is not present in the current row, current column and current 3X3 subgrid. After checking for safety, assign the number, and recursively check whether this assignment leads to a solution or not. If the assignment doesn’t lead to a solution, then try the next number for the current empty cell. And if none of the number (1 to 9) leads to a solution, return false and print no solution exists.

Algorithm: 

  1. Create a function that checks after assigning the current index the grid becomes unsafe or not. Keep Hashmap for a row, column and boxes. If any number has a frequency greater than 1 in the hashMap return false else return true; hashMap can be avoided by using loops.
  2. Create a recursive function that takes a grid.
  3. Check for any unassigned location. If present then assign a number from 1 to 9, check if assigning the number to current index makes the grid unsafe or not, if safe then recursively call the function for all safe cases from 0 to 9. if any recursive call returns true, end the loop and return true. If no recursive call returns true then return false.
  4. If there is no unassigned location then return true.

Implementation:



# A Backtracking program
# in Python to solve Sudoku problem
 
# A Utility Function to print the Grid
def print_grid(arr):
    for i in range(9):
        for j in range(9):
            print arr[i][j],
        print ('n')
 
         
# Function to Find the entry in
# the Grid that is still  not used
# Searches the grid to find an
# entry that is still unassigned. If
# found, the reference parameters
# row, col will be set the location
# that is unassigned, and true is
# returned. If no unassigned entries
# remains, false is returned.
# 'l' is a list  variable that has
# been passed from the solve_sudoku function
# to keep track of incrementation
# of Rows and Columns
def find_empty_location(arr, l):
    for row in range(9):
        for col in range(9):
            if(arr[row][col]== 0):
                l[0]= row
                l[1]= col
                return True
    return False
 
# Returns a boolean which indicates
# whether any assigned entry
# in the specified row matches
# the given number.
def used_in_row(arr, row, num):
    for i in range(9):
        if(arr[row][i] == num):
            return True
    return False
 
# Returns a boolean which indicates
# whether any assigned entry
# in the specified column matches
# the given number.
def used_in_col(arr, col, num):
    for i in range(9):
        if(arr[i][col] == num):
            return True
    return False
 
# Returns a boolean which indicates
# whether any assigned entry
# within the specified 3x3 box
# matches the given number
def used_in_box(arr, row, col, num):
    for i in range(3):
        for j in range(3):
            if(arr[i + row][j + col] == num):
                return True
    return False
 
# Checks whether it will be legal
# to assign num to the given row, col
# Returns a boolean which indicates
# whether it will be legal to assign
# num to the given row, col location.
def check_location_is_safe(arr, row, col, num):
     
    # Check if 'num' is not already
    # placed in current row,
    # current column and current 3x3 box
    return not used_in_row(arr, row, num) and
           not used_in_col(arr, col, num) and
           not used_in_box(arr, row - row % 3,
                           col - col % 3, num)
 
# Takes a partially filled-in grid
# and attempts to assign values to
# all unassigned locations in such a
# way to meet the requirements
# for Sudoku solution (non-duplication
# across rows, columns, and boxes)
def solve_sudoku(arr):
     
    # 'l' is a list variable that keeps the
    # record of row and col in
    # find_empty_location Function   
    l =[0, 0]
     
    # If there is no unassigned
    # location, we are done   
    if(not find_empty_location(arr, l)):
        return True
     
    # Assigning list values to row and col
    # that we got from the above Function
    row = l[0]
    col = l[1]
     
    # consider digits 1 to 9
    for num in range(1, 10):
         
        # if looks promising
        if(check_location_is_safe(arr,
                          row, col, num)):
             
            # make tentative assignment
            arr[row][col]= num
 
            # return, if success,
            # ya !
            if(solve_sudoku(arr)):
                return True
 
            # failure, unmake & try again
            arr[row][col] = 0
             
    # this triggers backtracking       
    return False
 
# Driver main function to test above functions
if __name__=="__main__":
     
    # creating a 2D array for the grid
    grid =[[0 for x in range(9)]for y in range(9)]
     
    # assigning values to the grid
    grid =[[3, 0, 6, 5, 0, 8, 4, 0, 0],
          [5, 2, 0, 0, 0, 0, 0, 0, 0],
          [0, 8, 7, 0, 0, 0, 0, 3, 1],
          [0, 0, 3, 0, 1, 0, 0, 8, 0],
          [9, 0, 0, 8, 6, 3, 0, 0, 5],
          [0, 5, 0, 0, 9, 0, 6, 0, 0],
          [1, 3, 0, 0, 0, 0, 2, 5, 0],
          [0, 0, 0, 0, 0, 0, 0, 7, 4],
          [0, 0, 5, 2, 0, 6, 3, 0, 0]]
     
    # if success print the grid
    if(solve_sudoku(grid)):
        print_grid(grid)
    else:
        print "No solution exists"
 
# The above code has been contributed by Harshit Sidhwa.
Output
3 1 6 5 7 8 4 9 2 
5 2 9 1 3 4 7 6 8 
4 8 7 6 2 9 5 3 1 
2 6 3 4 1 5 9 8 7 
9 7 4 8 6 3 1 2 5 
8 5 1 7 9 2 6 4 3 
1 3 8 9 4 7 2 5 6 
6 9 2 3 5 1 8 7 4 
7 4 5 2 8 6 3 1 9

Complexity Analysis:  

  • Time complexity: O(9^(n*n)). 
    For every unassigned index, there are 9 possible options so the time complexity is O(9^(n*n)). The time complexity remains the same but there will be some early pruning so the time taken will be much less than the naive algorithm but the upper bound time complexity remains the same.
  • Space Complexity: O(n*n). 
    To store the output array a matrix is needed.

Method 3: Using Bit Masks.

Approach: This method is a slight optimization to the above 2 methods.  For each row/column/box create a bitmask and for each element in the grid set the bit at position ‘value’ to 1 in the corresponding bitmasks, for O(1) checks.

Algorithm: 

  1. Create 3 arrays of size N (one for rows, columns, and boxes).
  2. The boxes are indexed from 0 to 8. (in order to find the box-index of an element we use the following formula: row / 3 * 3 + column / 3).
  3. Map the initial values of the grid first.
  4. Each time we add/remove an element to/from the grid set the bit to 1/0 to the corresponding bitmasks.

Implementation:



# N is the size of the 2D matrix N*N
N = 9
 
# A utility function to print grid
def printing(arr):
    for i in range(N):
        for j in range(N):
            print(arr[i][j], end = " ")
        print()
 
# Checks whether it will be
# legal to assign num to the
# given row, col
def isSafe(grid, row, col, num):
 
    # Check if we find the same num
    # in the similar row , we
    # return false
    for x in range(9):
        if grid[row][x] == num:
            return False
 
    # Check if we find the same num in
    # the similar column , we
    # return false
    for x in range(9):
        if grid[x][col] == num:
            return False
 
    # Check if we find the same num in
    # the particular 3*3 matrix,
    # we return false
    startRow = row - row % 3
    startCol = col - col % 3
    for i in range(3):
        for j in range(3):
            if grid[i + startRow][j + startCol] == num:
                return False
    return True
 
# Takes a partially filled-in grid and attempts
# to assign values to all unassigned locations in
# such a way to meet the requirements for
# Sudoku solution (non-duplication across rows,
# columns, and boxes) */
def solveSudoku(grid, row, col):
 
    # Check if we have reached the 8th
    # row and 9th column (0
    # indexed matrix) , we are
    # returning true to avoid
    # further backtracking
    if (row == N - 1 and col == N):
        return True
     
    # Check if column value becomes 9 ,
    # we move to next row and
    # column start from 0
    if col == N:
        row += 1
        col = 0
 
    # Check if the current position of
    # the grid already contains
    # value >0, we iterate for next column
    if grid[row][col] > 0:
        return solveSudoku(grid, row, col + 1)
    for num in range(1, N + 1, 1):
     
        # Check if it is safe to place
        # the num (1-9) in the
        # given row ,col ->we
        # move to next column
        if isSafe(grid, row, col, num):
         
            # Assigning the num in
            # the current (row,col)
            # position of the grid
            # and assuming our assigned
            # num in the position
            # is correct
            grid[row][col] = num
 
            # Checking for next possibility with next
            # column
            if solveSudoku(grid, row, col + 1):
                return True
 
        # Removing the assigned num ,
        # since our assumption
        # was wrong , and we go for
        # next assumption with
        # diff num value
        grid[row][col] = 0
    return False
 
# Driver Code
 
# 0 means unassigned cells
grid = [[3, 0, 6, 5, 0, 8, 4, 0, 0],
        [5, 2, 0, 0, 0, 0, 0, 0, 0],
        [0, 8, 7, 0, 0, 0, 0, 3, 1],
        [0, 0, 3, 0, 1, 0, 0, 8, 0],
        [9, 0, 0, 8, 6, 3, 0, 0, 5],
        [0, 5, 0, 0, 9, 0, 6, 0, 0],
        [1, 3, 0, 0, 0, 0, 2, 5, 0],
        [0, 0, 0, 0, 0, 0, 0, 7, 4],
        [0, 0, 5, 2, 0, 6, 3, 0, 0]]
 
if (solveSudoku(grid, 0, 0)):
    printing(grid)
else:
    print("no solution exists ")
 
# This code is contributed by sanjoy_62.
Output
3 1 6 5 7 8 4 9 2 
5 2 9 1 3 4 7 6 8 
4 8 7 6 2 9 5 3 1 
2 6 3 4 1 5 9 8 7 
9 7 4 8 6 3 1 2 5 
8 5 1 7 9 2 6 4 3 
1 3 8 9 4 7 2 5 6 
6 9 2 3 5 1 8 7 4 
7 4 5 2 8 6 3 1 9 

 Complexity Analysis:  

  • Time complexity: O(9^(n*n)). For every unassigned index, there are 9 possible options so the time complexity is O(9^(n*n)). The time complexity remains the same but checking if a number is safe to use is much faster, O(1).
  • Space Complexity: O(n*n). To store the output array a matrix is needed, and 3 extra arrays of size n are needed for the bitmasks.
Click here for more details...

=============================
The original post is available in geeksforgeeks by
this post has been published as it is through automation. Automation script brings all the top bloggers post under a single umbrella.
The purpose of this blog, Follow the top Salesforce bloggers and collect all blogs in a single place through automation.
============================